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Abstract. Sequential pattern mining is a vital problem with broad applications. However, it is also challenging, as combinatorial
high number of intermediate subsequences are generated that have to be critically examined. Most of the basic solutions are
based on the assumption that the mining is performed on static database. But modern day databases are being continuously
updated and are dynamic in nature. So, incremental mining of sequential patterns has become the norm.

This article investigates the need for incremental mining of sequential patterns. An analytical study, focusing on the charac-
teristics, has been made for more than twenty incremental mining algorithms. Further, we have discussed the issues associated
with each of them. We infer that the better approach is incremental mining on the progressive database. The three more relevant
algorithms, based on this approach, are also studied in depth along with the other work done in this area. This would give scope
for future research direction.
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1. Introduction

There has been an increase in our capabilities of both generating and collecting data with the progress
and development of technology. The ultimate intent of this massive data collection is to have competitive
benefits. This is achieved by determining unidentified patterns in data which further help in decision
making. Therefore, developing approaches and tools to discover knowledge hidden in these databases is
the need of the hour.

Data cleaning, data integration, data selection, data transformation, data mining, pattern evaluation and
knowledge representation are different steps of Knowledge Discovery in Databases (KDD). Of these,
data mining is an extremely important step [34]. Mechanism of extracting information from data is
shown in Fig. 1.

Data mining is the process to analyze the data with the objective of finding rules and patterns to
categorize the data [37]. Classification, regression, summarization, clustering, association rule mining,
sequential mining are some of the techniques used for data mining [36]. Of these, sequential pattern
mining has emerged as an area of active research.
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Table 1
A transaction database ‘S’

Transaction Item sets
identifier

100 bread, butter, milk
200 bread, egg, milk
300 bread, milk, cheese
400 butter, cheese, sausage

Table 2
A sequence database ‘D’

Sequence Customer purchase sequences
identifier

100 <bread(bread, butter, egg)(bread, egg) milk (egg, sausage)>
200 <(bread, milk) egg (butter, egg) (bread, cheese)>
300 <(cheese, sausage) (bread, butter) (milk, sausage) egg butter>
400 <cheese oats (bread, sausage) egg butter egg>

Fig. 1. Information extraction from the databases.

Sequential Pattern Mining [SPM] is the process that finds all frequent subsequences as patterns in a
given sequence database [34]. A sequential pattern is a sequence having support greater than or equal to
a minimum threshold, called the minimum support. The support of a subsequence is the percentage of
data sequences containing the subsequence. The sequence database differs from the transaction database,
as illustrated by the following example. This example, also examines the potential sequence patterns in
a sequence database.

A simple transactional database includes a unique transaction identity number and a list of the items
making up the transaction. Let our customer purchase transaction database be ‘S’ given in Table 1. A
transaction identifier 100 refers to a unique transaction with items bread, butter, milk.

On the contrary, a sequence database includes a sequence identity number and a sequence, where a
sequence is an ordered list of events denoted as <e1 e2 e3 e4 . . . en> where e1 occurs before e2, which
occurs before e3 and so on. However the event by itself is an item set, that is, an unordered list of items
denoted as (x1, x2, . . . , xm) where xj is an item. Let our customer purchase sequence database be ‘D’
given in Table 2 with 100, 200, 300 and 400 be identifier for different sequences. A sequence 100 has
ordered list of events <bread (bread, butter, egg) (bread, egg) milk (egg, sausage)> where purchase of
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bread as an event e1 has occurred before purchase of another event e2 (bread, butter, egg). The event e2
is an item set consisting of unordered list of items – bread, butter and egg.

We can conclude with defining, I = {i1, i2, . . . , im} be a set of literals called items. An item set is
a non-empty set of items. A sequence s is a set of item sets ordered according to their time stamp. It is
denoted by [s1, s2, . . . , sn], where sj, j ∈ 1, . . . , n, is an item set. A k-sequence is a sequence of k items
(or of length k). A sequence [s1, s2, . . . , sn] is a sub-sequence of another sequence [s′1, s

′
2, . . . , s

′
m], if

there exist integers i1 < i2 < . . . ij . . . < in; such that s1 ⊆ s′i1, s2 ⊆ s′i2, . . . , sn ⊆ s′in.
Sequential pattern is a sequence of item sets that frequently occur in a specific order. All items in the

same item set are supposed to have the same transaction time value or within a time gap [34,37]. Each
sequence corresponds to a temporally ordered list of events, where each event is a collection of items
(item set) occurring simultaneously. The problem of SPM is to find all frequent subsequences whose
occurrence frequency is no less than the user defined minimum threshold minSupp. For our example,
<bread (butter, egg) milk egg> is a subsequence of <bread (bread, butter, egg) (bread, egg) milk (egg,
sausage)>. Given a minimum support threshold, minSupp = 2, <(bread, butter) egg> is a sequential
pattern for our example in Table 2.

SPM generally faces challenges due to large search space and lack of prior information for the number
of items in an item set and/or the number of item sets in a pattern. The pattern could be formed by any
possible permutation and combination of both single items and item sets in the database.

Sequential pattern mining finds application in various areas like telecommunication industry to study
customer call pattern, financial institutions like banks for analysis of financial data, retail industry to
analyze the sales data, stock market analysis and prediction, biological data analysis as in DNA sequence
analysis, scientific applications as weather prediction, intrusion detection in networks, world wide web
as to study web traversal sequences.

1.1. Motivation for the study

SPM and the different algorithms for its implementation have been studied by number of re-
searchers [16,17,34,36]. This paper contributes to the research because:

1. It discusses the major drawback of the basic algorithms that are used for SPM.
2. It is the first attempt that studies the various approaches and issues of incremental SPM.
3. It also presents the need of incremental mining on progressive databases to have more relevant

sequential patterns.
The goal of the paper is to answer questions like:

– What do we mean by incremental SPM?
– What is the need of incremental SPM?
– What are the different approaches used by incremental SPM algorithms?
– What are the different issues with the incremental SPM algorithms?
– How we can overcome the drawbacks of these algorithms?

1.2. Organization of the paper

The remainder of the paper is organized as follows. Section 2 presents in brief the basic algorithms
used for the SPM and the problem associated with them. The need for incremental mining of sequen-
tial patterns is discussed in Section 3. The different approaches of incremental mining algorithms are
studied in Section 4. In Section 5 the comparative analysis is made for these algorithms on the basis
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of their characteristics. The issues of incremental mining algorithms for SPM are discussed in detail in
Section 6. The different approaches that can resolve the limitation of incremental mining are discussed
in Section 7. Section 8 gives the application of these algorithms with the help of real time examples. We
have concluded our study with the scope for future research in Section 9.

2. Basic approaches for SPM

There is plenty of literature available on different approaches used by SPM algorithms [2,8,12,15–18,
21,27,34,36,38,45–47,49]. We briefly present some of the salient approaches for the completeness of the
article.

AprioriSome, AprioriAll and Dynamicsome algorithms were proposed by Agrawal and Srikant [2,
36,37] based on apriori approach. The approach uses the prior knowledge of frequent sequences. It
makes use of iterative approach for candidate generation. It starts with the generation of frequent 1
sequences and then generates frequent (k+1) sequences from the set of frequent k sequences (called as
candidate). However to decide whether a particular sequence is frequent, the entire database is scanned.
The GSP (Generalized Sequential Pattern) [34] algorithm is an extension of the apriori model (candidate
generation approach) and is based on sliding window principle. The items are considered in the same
transaction if the distance between the maximal transaction time and the minimal transaction time of the
items is no bigger than the sliding window.

SPADE (Sequential Pattern, Discovery using Equivalent classes) algorithm [27] is based on apriori
vertical formatting method. The sequential database is converted into a vertical id-list database format
and each id is associated with corresponding items and the time stamp. This algorithm aims to find
frequent sequences using efficient lattice search techniques and simple joins. All the sequences are dis-
covered with only three passes over the database. The first scan finds the frequent items, the second
scan search for the frequent sequences of length 2 and the last one associate to frequent sequences of
length 2, a table of the corresponding sequences id and item sets id in the database. The method forms
the enumeration of the candidate sequences, based on their common prefixes. As AprioriAll, GSP and
other algorithms depend little on main memory so SPADE outperforms these algorithms.

Later, projection based pattern growth approach was developed that avoids the candidate generation,
and search is applied only on a restricted part of the database. FreeSpan [17] is the first algorithm
proposed that considers the projection method for SPM. This work has been continued with Prefix Span
algorithm [21]. The algorithm starts from the frequent items of the database, and generates projected
databases with the remaining data-sequences. The projected databases thus contain suffixes of the data-
sequences from the original database, which are grouped by prefixes. The process is recursively repeated
until no frequent item is found in the projected database. By using projection, the database PrefixSpan
scans every time is much smaller than the original database. Unlike GSP and AprioriAll, PrefixSpan can
handle very long sequential pattern more efficiently. This method is also called level-by-level projection.

PSP algorithm [8,17] has implemented pseudo projection technique, which do not construct projection
database physically. Each postfix is represented by a pair of pointer and offset value in the main memory.
However, it can be used only when the projected database and its associated pseudo-projection process-
ing structure fits in the main memory. SPAM (Sequential PAttern Mining) [12] is another method that
represents the database in the main memory. It generates a vertical bitmap representation of the database
for both candidate representation and support counting.

SPaRSe (Sequential PAttern mining with Restricted SEarch) [34,38] is an algorithm that makes
apriori-based method as efficient as pattern-growth method under specific conditions. It uses both the
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Fig. 2. Changes in database due to dynamic transactions.

candidate generation and projected database concept to achieve higher efficiency for high pattern density
conditions. The algorithm maintains a list of supporting sequences for each candidate. It then verifies
the existence of support only in the subset of sequences that are super-sequences of generated candi-
dates [17]. MEMISP (MEMory Indexing for Sequential Pattern mining) [16,34] algorithm requires one
pass over the database and at most two passes for very large database. It avoids candidate generation
and intermediate database projection by implementing techniques of recursive searching and indexing
strategy, to generate the sequential patterns from the data sequences that are stored in memory.

In general, SPM algorithms either result in enormous or very few patterns based on the user specified
support threshold. Almost no or very few sequential patterns are given in case of large support thresh-
old value. On the contrary, the mining algorithms result with enormous patterns for a smaller support
threshold value. These methods hence make a tradeoff between efficiency and effectiveness. Further, we
may list the limitations of these basic approaches as below:

a) There are often a huge number of sequential patterns in a large database. The complete set of
sequential patterns generated makes the mining result ineffective and difficult to use.

b) They do not focus only on those sequential patterns that are of interest to users, and hence are
computationally expensive.

c) They assume that the data is centralized, memory-resident and static. So they waste computational
and input/output (I/O) resources for dynamic data and impose excessive communication overhead
for distributed data.

3. Incremental Sequential Pattern Mining (ISPM)

In practice, databases are dynamic and are appended with new data sequences, by either existing or
new customers. Some of the existing patterns may become invalid as their minimum support become
insufficient with respect to the currently updated database. Some new patterns may even get created due
to the increase in their support value. The incremental sequential pattern mining is required to handle
this situation where the result mined from the old database is not valid on the updated database and it is
inefficient to mine the updated databases from scratch [9,11].

We can define the Incremental Sequential Patterns Mining (ISPM) as the process to compute the set
of sequential patterns from the updated database by using the two operations stated as;

a) Discover all sequential patterns which were not frequent in the original database but become fre-
quent with the increment.

b) Examine all transactions in the original database that can be extended to become frequent.
For the purpose of representation, let us consider an original database ‘U ’ and an incremental database
‘I’ where new transactions or new customers are added to ‘U ’ (Fig. 2). The minimum support threshold
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Fig. 3. Process flow to obtain FP by re-mining the database using SPM algorithms.

Fig. 4. Process flow to obtain FP by ISPM algorithms.

is represented as minSupp. P = U ∪ I is the updated database containing all sequences from U and
I . If FU is the set of frequent sequences in U , then the problem of ISPM is to find frequent sequence
patterns in P , denoted as FP , with respect to the same minimum support. Unlike the conventional static
mining algorithms, the incremental approach avoids re-running of mining algorithms from scratch when
the database is updated (Fig. 3). ISPM algorithms reuse previously mined information and combine this
information with the fresh data to efficiently compute the new set of frequent sequences [9] as depicted
in Fig. 4.

Therefore, developing efficient approaches for ISPM has received a great deal of attention for ensuring
scalability and facilitating knowledge discovery when data is dynamic and distributed.

4. Approaches for ISPM algorithms

In recent times, ISPM algorithms have gained immense importance in real life applications. A concise
review of the research work related to the ISPM is presented here. Based on the typical naïve approach
each of these algorithms implement and the characteristics they possess, we have classified them in four
categories (Fig. 5) as given in the following sub-sections.
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Fig. 5. Taxonomy of ISPM algorithms.

GSP SPADE SPAM

Naïve Algorithm

Apriori -Based

FASTUP     ISE         IncSP     IPCI ISM IncSPAM BSPinc

Fig. 6. ISPM algorithms that use Apriori as naïve approach.

4.1. Apriori-based approach

The ISPM algorithms discussed in this section are those that have used Apriori-based (candidate
generate-and-test) approach. Figure 6 gives the diagrammatic representation of these set of ISPM algo-
rithms.

FastUP approach [28] is one among the initial work done in the field of the ISPM. It is based on GSP
approach with improvements performed on candidate generation and support counting. The algorithm
uses the pruning method before candidate generation and validation. This pruning approach uses the
previous mining results to get information about the sequence thresholds. Hence it can avoid generating
some sequence based on their support. It further applies techniques of fast filtering during support count-
ing and successive candidate sequence reduction. This improves the overall space and time efficiency of
the algorithm over conventional SPM algorithm.

Then, an algorithm with an approach similar to SPADE was proposed called ISM (Incremental Se-
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quence Mining) [40], which maintains sequence lattice of an old database. This lattice includes all the
sequences that are frequent or are in the negative border. The negative border concept helps algorithm
to maintain the updating of the database. ISM performs pruning of lattice and generates negative border
sequences in one database scan initially. In next step, the new frequent sequences are generated using
the SPADE approach. As the number of sequences in the negative border can be very huge, this ap-
proach could be expensive in terms of memory and time. However, it is unlikely to have sequences in
the negative border to become frequent in the updated database if they have low support.

IUS (Incrementally Updating Sequences) [35] is an algorithm that also minimizes the computing cost
by reusing the frequent and negative border sequences in the original database. A new threshold for
negative border sequences called the minimum support of negative border sequences; min_nbd_Supp is
defined by the algorithm to control the memory and time consumed otherwise by these sequences [as
observed in ISM algorithm]. Hence the frequent sequences whose support is less than min_Supp and
greater than min_nbd_Supp are treated as negative border sequences. IUS generates candidates from
original database by extending both the prefix and suffix of frequent sequences.

Another well recognized ISPM algorithm ISE (Incremental Sequence Extraction) [9] minimizes the
computational effort by using the old frequent sequences in an iterative manner and then applying op-
timization techniques. ISE algorithm though, significantly outperforms the naïve approach, GSP algo-
rithm but suffers from major limitations. The problem of this algorithm is (a) the candidate set can be
very huge making the test-phase very slow; and (b) its level-wise working manner requires multiple
scans of the whole database. This is very costly, especially when the sequences are long.

IncSP (Incremental Sequential Pattern Update) [29] algorithm is based on combined approaches of
effective implicit merging, early candidate pruning and efficient separate counting. Implicit merging of
updated sequences with previous useful sequences is done. Candidate pruning is performed by checking
counts in the increment database to generate fewer but better candidates. However, support counting
of promising candidates over original database gives new updated patterns. IncSP not only updates the
support of existing patterns but also find out the new patterns from the updated database in continuous
manner. IncSP was found to be fast and scalable as compared to GSP and ISM in most cases.

The concept of partitioning the search space using theory of rough sets is used by the ISPM algorithm,
IPCI [13]. The knowledge of the minimal generators (one that do not have any sub patterns), frequent
closed patterns (the one with no super pattern with the same support) and maximal patterns (sequence
set with the highest cardinality) is used. All these types of patterns with their occurrence frequency
are utilized to reduce the space of frequent sequential patterns in the updated database. IPCI looks
for patterns in only the specified equivalence classes and require no buffering of patterns. This gives
better time and space efficiency. The database scans are limited to one or two with no huge candidate
generation.

The SPM process is typically iterative and interactive. As discussed in Section 2, large or very few
patterns could be mined from the database depending on the minimum support (minSupp) value. So
generally the user tries various minSupp values until the result is satisfactory. Most ISPM approaches
are not designed to deal with repeated mining so each minSupp value invokes a re-mining from scratch.
A simple approach, called KISP (Knowledge base assisted Incremental Sequential Pattern) [30] was pro-
posed to improve the efficiency of sequential pattern discovery with changing supports. KISP utilizes the
information obtained from prior mining performed using an assumed least minSupp. It then generates
a knowledge base (abbreviated KB) for further queries about sequential patterns of various minSupp. In
cases when the results cannot be directly obtained from the KB, KISP performs fast sequence discovery
by eliminating the candidates existing in KB, before counting support. The algorithm can accepts any
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Prefix-Span             Suffix-Based Frequent 

Naïve 
Algorithm

Stree PS      IncSpan      Con FST       IncSpan+            Suffix Tree FUSP Tree FUSP  Tree with
Maintenance  Pre-large Sequences

Tree Projec�on

Fig. 7. ISPM algorithms that use Tree Projection as naïve approach.

minSupp value and has no difficulty in mining huge databases even with a small main memory. Two op-
timizations are done to speed up KISP. The direct generation of new candidates that eliminates candidate
searching in KB and the concurrent support counting that reduces database scanning.

4.2. Projection based pattern – growth approach

ISPM algorithms that are based on tree projection approach (Fig. 7) are discussed in this section.
These algorithms do not generate candidate set followed by testing phase and hence avoid rescanning of
the database, as is the case with the apriori-based methods.

Suffix Tree algorithm [24], a very preliminary concept that use projection approach was first intro-
duced for ISPM. It maintains suffix tree to store the frequent sequences of the database. The algorithm
suggests that for every addition of the data sequence in the database, the tree could be modified by in-
serting a node appropriately. However, the focus was on multiple sequences of item sets, instead of a
single long sequence of items.

Then, a popular algorithm IncSpan [11], based on PrefixSpan approach was proposed that has inter-
esting properties. When mining the original database, IncSpan buffers the frequent sequences, as well
as the sequences that are semi-frequent, which are likely to become frequent in the new version. Later,
when mining the new version, only sequences with support over a certain threshold are likely to be-
come frequent, out of un-buffered sequences. The algorithm has improved performance due to effective
implicit merging, early candidate pruning, and efficient separate counting. However, it was found that
IncSpan is not general enough to handle real life database evolution and its performance is far from
optimal.

IncSpan algorithm fails to mine the complete set of sequential patterns from an updated database, as
discovered by Nguyen et al. [39]. They clarified the weakness of the algorithm, by proving the incor-
rectness of the basic properties in the IncSpan algorithm. Also, they rectified the observed shortcomings
by giving their solution as Improved IncSpan.

Another better solution to avoid the drawback of IncSpan algorithm was given by Chen et al. [48].
IncSpan+, an ISPM algorithm constructs a prefix tree to represent the sequential patterns. Then it con-
tinuously scans the incremental item set in the updated database and maintains the tree structure accord-
ingly. To improvise the performance and eliminate the search space, the techniques of width pruning and
depth pruning are used by this algorithm.

In general, the ISPM algorithms that are based on tree projection, maintain structure to store frequent
sequential patterns with their minimum support threshold. With every update in the original database,
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Fig. 8. Evolution of Frequent Pattern Tree for maintaining sequential patterns.

these algorithms re-construct the storage structure. Liu et al. [19] proposed an algorithm Stree_PS (Se-
quence tree_PrefixSpan) to construct and maintain a storage structure called sequence tree. This tree is
similar to prefix tree which stores all sequences in the original database i.e. all frequent and infrequent
sequences along with their support. Hence the path from the root node to leaf node represents a sequence
in the database. Stree_PS adds the incremental sequences to the sequence tree and dynamically main-
tain its structure. It uses depth first search strategy to traverse the sequence tree and find all sequential
patterns in the updated database. This avoids re-constructing of projected database with every updating
of original database. Hence, the algorithm has better time and space efficiency for ISPM.

Further enhancement in this direction was made by introducing a new storage structure called frequent
sequence (FS) tree [20]. The data storage structure used by most of the ISPM algorithms cannot cope
up with the change in the minimum support threshold given by the user. In such cases, the algorithms
need to mine the database again. The FS tree stores all the sequential patterns that satisfy the minimum
support threshold along with their support. An algorithm called Con_FST (Construction algorithm for
Frequency Sequence Tree) can find all the sequential patterns with change in support, without re-mining
the database, using this tree. The path from the root node to any leaf node represent sequential pattern
in the database. The root node of the FST stores the support threshold of the frequent sequence tree.
To enhance the performance of the algorithm, the pruning strategy could be further applied. However,
for high support threshold, the number of sequential pattern is limited and the storage requirement of
projected database is less than that of the sequence tree.

4.3. Frequent pattern tree based approach

Another set of ISPM algorithms, are those that use frequent pattern (FP) tree (different from frequent
sequence tree) [5] as storage structure. A FP tree was extended to fast updated frequent pattern (FUFP)
tree which further was upgraded to fast updated sequential pattern (FUSP) tree as storage structure
(Fig. 8).

The proposed FUSP tree structure extends the concept of FUFP – tree and IncSpan tree to store only
the frequent sequential patterns. This makes the FUSP tree compact and complete to avoid the rescan-
ning of the original database. An incremental FUSP – tree maintenance algorithm [5] was developed to
handle and maintain the FUSP – tree for recursive ISPM. This can handle the new transactions from old
customers and new customers. The FUSP – tree is build initially with the original database. When new
transactions are added, the algorithm processes them to maintain the FUSP tree. The entire FUSP tree
is re-constructed in a batch manner when a sufficiently large number of transactions have been inserted.
As the frequency of sequences is not maintained by FUSP-tree, the tree complexity is not optimal.

Hong et al. [44] have proposed an algorithm, called Incrementally Fast Updated Sequential Pattern
tree with pre-large sequences. It modifies the FUFP tree maintenance algorithm, based on pre-large con-
cept [43], to reduce the rescanning of the original database, till a sufficiently large number of sequences
are added. This modified FUFP tree structure is extended to FUSP-tree to store the frequent sequential
patterns. The FUSP-tree is initially built from the original database. The algorithm divides the newly
added customer sequences into three parts as large, pre-large or small sequences of the original database

AU
TH

O
R 

CO
PY



B. Mallick et al. / Incremental mining of sequential pattern 517

Fig. 9. Combined approaches used by DSPID algorithm in its implementation.

Fig. 10. Combined approaches used by IncSPAM algorithm in its implementation.

Fig. 11. Combined approaches used by IMCS algorithm in its implementation.

and processes them accordingly. Then these sequences are sorted in descending order of their frequency.
Finally they are scanned again to reconstruct the FUSP tree according to their sequence order. The algo-
rithm also makes use of index table and header table to store the index and frequency of these sequences.

4.4. Hybrid/other approaches

This section studies those ISPM algorithms that are based on combination of typical approaches
(Figs 9–13) and hence have interesting properties.

The algorithm DSPID (Discover Sequential Patterns in Incremental Database) [33] uses apriori and
maximal sequence pattern approach (Fig. 9) with some variations. It utilizes the information obtained
from previous mining results unlike apriori-based approaches. It performs mining of maximal sequence
patterns (compact representation of frequent sequential patterns) that reduce the number of patterns,
without losing any information. DSPID then builds a data model called Frequent Sequence Set (FSS), to
represent original sequence database along with frequency. The algorithm compares the new sequence
appended in the database with the existing sequences in the FSS. Every new sequence is processed as per
the relationship; it has with the original sequences as defined by the algorithm. It saves a lot of memory
because no candidate sets are generated during mining process.

The algorithm IncSPAM [6] is typically used for SPM over a stream of item set sequences. It uti-
lizes the sliding window model over data stream, that is, transaction sensitive. The model receives the
transactions from the data stream and uses an effective bit sequence representation of item set. This
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Fig. 12. Combined approaches used by BSPinc algorithm in its implementation.

Fig. 13. Combined approaches used by IMSP algorithm in its implementation.

bit vector called Customer Bit Vector Array with Sliding Window (CBASW) can analyze each trans-
action effectively. The algorithm then makes use of weight function, to evaluate the importance of a
sequence (Fig. 10) and also ensure the correctness of the sliding window model. IncSPAM is a single
pass algorithm with efficient execution time and memory requirement.

Another algorithm, MILE (MIning in muLtiple strEams) [10] was proposed for mining sequential
patterns in multiple data streams. The performance of the algorithm is improvised, by having the prior
information regarding the data distribution in data streams. This avoids re-scanning of the database.
MILE though based on PrefixSpan, append suffix with updated sequences to enhance the speed of dis-
covering the new frequent sequential patterns. It emphasizes on generating sequential patterns from
periodical data and uses a hash method to reduce time requirement. So the sequential patterns generated
are not complete and accurate.

Chang et al. [25] have examined the problem of mining the closed sequential patterns incrementally.
The idea is to mine patterns which have no super-patterns with the same support in the database [15,18].
This reduces the redundant patterns generation and subsequently the storage requirement, as compared
to complete sequential pattern mining. The efficiency of mining result is substantial if the minimum
support value is low. A compact structure CSTree (closed sequence tree) was designed to keep the
closed sequential patterns of the database. They proposed an efficient algorithm IMCS, (Incremental
Maintenance of Closed Sequential Pattern) that maintains the CSTree for the sequence database, that
is updated incrementally. The nice properties of CSTree are used to find the obsolete sequences and to
change the state of other sequences (represented as nodes), when the database is updated (Fig. 11).

ICspan (Incremental mining of closed sequential patterns in multiple data streams) [41] algorithm
has also implemented the concept of closed sequential pattern mining to resolve the drawback of MILE
algorithm. MILE algorithm with every new stream data input, mines only the new data rather than inte-
grating new mining results with old ones. ICspan algorithm, hence proposed the use of sliding window
model that sample the data from the input stream into units. It integrates the mining result obtained ear-
lier with new result by implementing closed SPM in an incremental manner. So, the memory and time
requirement of the algorithm is better than that of MILE.
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BSPinc (Backward SPAM for incremental mining) algorithm is based on backward mining concept,
for efficient incremental discovery of sequential patterns [31]. Candidates are generated as (k + 1) se-
quences from k patterns, within the shrinking space of the projected database in the backward manner.
The bitmapped representation is used for sequences. The patterns whose support count does not change
in the updated database are mined with forward mining approach followed by apriori based method.
BSPinc makes use of stable sequence property (Fig. 12) for candidate pruning and hence substantially
improves the most time consuming step of support counting.

There is another algorithm IMSP that performs only one database scan to find the frequent sequential
patterns and generates no candidate sets. This is done by transforming the original sequence database into
a closed frequency data model. It mines frequent sequences in form of maximal sequential pattern instead
of mining the full set of frequent sequences. IMSP has compact searching space compared to other
maximal pattern mining algorithm and adjustable minimum support threshold (Fig. 13). The approach
requires less memory space.

SPAMS (Sequential Patterns Automaton for Mining Streams), is an online algorithm proposed [26]
for incremental sequential patterns mining in data streams. This algorithm uses SPA (Sequential Pattern
Automaton), an automaton-based structure to maintain frequent sequential patterns. The automaton in-
dexes all frequent sequential patterns from a data stream. The number of these patterns is smaller than
the set of otherwise generated frequent sequential patterns by two or more orders of magnitude. This
helps to overcome the problem of combinatorial high number of sequential patterns, usually in case of
other algorithms for data streams. The proposed algorithm, SPAMS, is designed by considering the char-
acteristics of data streams. The results are based on the users’ specified threshold. Experimental studies
performed, showed the relevance of the SPA data structure and the efficiency of the SPAMS algorithm,
on various datasets. However, this contribution is an initiative of using an automaton as a data structure
for mining, based on some approximation.

The pre-large concept [43] is generally used to postpone original small sequences, becoming large di-
rectly and vice versa, when new transactions are added. This basic idea was used for ISPM very recently.
A lower support threshold and an upper support threshold are defined for the pre-large sequences. The
upper support threshold is same as the minimum support threshold of conventional mining algorithms.
The support ratio of a sequence must be larger than the upper support threshold to be considered large. A
sequence with a support ratio below the lower threshold is treated as a small sequence. Hence, pre-large
sequence acts like buffer to reduce the movement from large to small and small to large in incremental
mining. Therefore when few new transactions are added in the database, the original small sequences
at most become pre-large and never large. This reduces the rescanning of the original database. Both
the threshold – upper and lower along with the size of the database define the safety bound for new
transactions.

The theoretical basis of the approaches used by various authors to investigate ISPM algorithms have
been summarized in Table 3 for the quick reference.

5. Analysis of ISPM algorithms

The study done on these ISPM algorithms helps us to draw important inferences and specify charac-
teristic features of each one of these. This has been given in Table 4.

We can see from this table, IncSpan+, BSPinc, SPAMS, IPCI, ISM are the algorithms whose perfor-
mance depends on size of frequent patterns. They become more useful in application where the size
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Table 3
Concepts used by ISPM algorithms in their implementation

Year ISPM algorithm Theoretical Basis
1996 Suffix tree [Wang et al.] Use a suffix tree technique to store the frequent sequential patterns.
1998 FASTUP [Lin et al.] Use a candidate generation and support counting approach with candidate

pruning.
1999 ISM [Parthasarthy et al.] SPADE based approach that maintains sequence lattice of frequent se-

quences and sequences in negative border.
2002 IUS [Zheng et al.] Based on negative border approach and uses a minimum support of neg-

ative border sequences threshold along with min_Supp.
2003 ISE [Masseglia et al.] Use a candidate-generate and test approach of Apriori based algorithms.
2003 KISP [Lin et al.] Interactive mining to obtain results for different values of minimum sup-

port. It maintains knowledge âĂŞ base for this purpose.
2004 IncSpan [Cheng et al.] PrefixSpan based approach and uses implicit merging, early candidate

pruning and efficient separate counting.
2004 IncSP [Lin et al.] Implicit merging, separate counting over appended sequences and early

candidate pruning for incrementally updated patterns.
2005 Improved IncSpan [Nguyen et al.] Rectified the incorrectness of the basic properties of IncSpan.
2005 MILE [Chen et al.] Based on prefixSpan but also append suffix to discover patterns in multi-

ple data streams.
2006 IncSPAM [Ho et al.] Uses the sliding window model over data streams and bit vector repre-

sentation for the customer sequential item sets.
2007 IncSpan+ [Chen et al.] Maintains prefix tree to represent sequential patterns and implement

width and depth pruning to eliminate search space.
2007 DSPID[Lin et al.] Based on maximal sequential pattern mining and uses a breadth first tech-

nique to extract the frequent maximal patterns.
2007 IMCS [Chang et al.] Mine closed sequential patterns incrementally using CSTree as the

database is updated in an incremental manner.
2008 FUSP tree maintenance [Lin] Use FUFP tree maintenance approach to store only frequent sequential

patterns to build FUSP tree.
2008 FUSP tree with pre-large [Tzung-Pei] Use FUFP tree maintenance approach to build FUSP tree along with the

concept of pre-large sequences.
2009 BSPinc [Lin et al.] Backward mining strategy to eliminate the stable sequences whose sup-

port count does not change in the updated database.
2010 SPAMS [Vincaslas et al.] Used for sequential patterns mining in data streams maintaining automa-

tion based structure for frequent sequential patterns.
2010 Stree_PS [Liu et al.] Maintain sequence tree as the storage structure to keep all sequences of

the original database along with their supports.
IMSP [Hao et al.] Generates a closed maximal frequency data model for the original se-

quence database instead of generating candidate sets.
2010 IPCI [Bisaria et al.] Based on partitioning concept on theory of rough sets.
2011 Con_FST [Liu et al.] Uses the frequent sequence tree as the storage structure to keep sequential

patterns along with their supports.
2011 Algorithm using Pre- large sequences. Based on the pre-large sequence concept to avoid the rescanning of the

database till a defined safety bound.
2011 ICs pan [Yang et al.] It uses sliding window model for data sampling and closed sequential

pattern mining.

of sequential pattern is small, like to study biological/medical application where protein, DNA size is
restricted or in case of study of disease with limited symptoms.

FASTUP, IUS, IncSP, FUSP-tree based algorithms, pre-large concept based algorithms generate effi-
cient sequential patterns based on size of new transaction sequences added in the database. Applications,
like study and analysis of software version change monitoring, where the databases do not grow contin-
uously, these algorithms can be of more useful.
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Stree_PS, IMSP, Con_FST, DSPID, IncSPAM algorithm are more suitable for applications where there
is huge generation of sequences and continuous updating in the database. These algorithms do not have
huge memory requirement, no multiple scanning of database is performed, either less or no candidate
generation; search space is less and they do not have any impact of size of frequent/new transaction
patterns. Market basket analysis, stock market analysis, web usage analysis are the applications, where
these algorithms can contribute better than the other ISPM algorithms.

SPAMS, Stree_PS, IMSP, Con_FST, Pre-large sequence are the algorithms whose performance is
affected by value of minimum support threshold. So, these algorithms are not suitable for applications
with changing and possibly high threshold values, like source code mining/text mining where the user
is interested in studying the text patterns with different values or for the study of customer purchase
behavior with varying attributes that can act as support values, etc.

IUS, ISE, IncSP are the algorithms that require multiple scans of database and generate huge candidate
sets. These algorithms are hence useful in applications where the numbers of database sequences are less.
For example, to study intrusion detection in a very small network is one such application.

IncSpan, Improved IncSpan, IncSPAM, IncSpan+, DSPID, IMCS, FUSP-tree based algorithms,
IMSP, IPCI are the algorithms, that would give fast mining result as they are based on partitioning the
search space of the database. So they could be significant when time efficiency is more important, like
in case of scientific applications, weather forecasting etc. However, IncSpan, IMCS has huge memory
requirement so they could be useful only if the tradeoff between time and memory is feasible.

It has also been realized, that the ISE, IncSpan, SPAMS, Prelarge sequences based algorithms do not
generate complete set of frequent sequential patterns. The analysis inferences and decision made on the
basis of mining results given by these algorithms for any application would be incorrect and incomplete.
These algorithms may even lead to loss of important information.

In general, the above discussion only gives an idea that how different ISPM algorithms’ characteristics
could be exploited for the use in any application. However, the selection of a particular ISPM algorithm
or a combination of these algorithms in real-time, depends on various factors like performance parame-
ters, hardware configuration, time and space requirement parameters etc as required for any application.

6. Limitations of ISPM algorithms

The ISPM algorithms, studied so far, have focused on two aspects:
1. How to deal with the incremental updating of sequential patterns when new data-sequences are

added to the original database?
2. How to deal with the maintenance of sequential patterns when the minimum support threshold

changes and there is no change in the original database?
But in the real time applications, like medical sciences, electronic commerce and web usage mining, we
often delete some data from sequence database. This is done due to different reasons like, to save storage
space, or may be some data is not interesting any longer, or may be it has become invalid.

The ISPM algorithms discussed in Section 4, could only handle insertion of sequences or appending
items into the tail of each sequence. There are other types of modifications such as adding or removing
items from a sequence or deletion of complete sequence. The ISPM algorithms cannot work in such
cases. So, if a certain sequence does not have any newly arriving elements, this sequence will still stay in
the database and undesirably contribute to count of the frequent sequential patterns. This generates high
number of frequent sequences and as the deletion of the obsolete data from the sequence database is not
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Fig. 14. Evolutions of SPM algorithms with time.

considered so many of these are uninteresting patterns. It is noted that users are usually more interested
in the recent data than the old ones. Moreover, the new arriving patterns may not be identified as frequent
sequential patterns, due to the existence of old sequences. The obsolete sequential patterns that are not
frequent recently, may be present in the reported results. The sequential patterns generated with these
ISPM algorithms, hence, give incomplete or inefficient patterns.

The solution comes in form of mining the sequential pattern from the progressive databases [1]. This
type of mining not only adds new data to the original database but also removes obsolete data from the
database. Hence, SPM could be classified into three categories:

– The SPM performed on static database finds the sequential patterns in the database that do not
change over time.

– The ISPM done on an incremental database that corresponds to the mining process where there are
new data arriving with the change in time i.e., the database is incremental.

– The Progressive Sequential Pattern Mining (PSPM) performed on a progressive database is the one
where the new data are added into the database and obsolete data are removed simultaneously.
Therefore, one can find the most up-to-date sequential patterns that are not influenced by obsolete
data [22].

Thus, the SPM with a static database and with an incremental database can be considered as the special
cases of the PSPM. When the obsolete data are not deleted from the database, the proposed approach
for the PSPM is same as in case of ISPM. However, if the database does not have new data and does not
delete obsolete data, then the PSPM approach can solve the static SPM problem. Figure 14, gives the
diagrammatic representation of these three categories of SPM algorithms.

7. PSPM algorithms

This section makes study of those the algorithms that perform SPM on progressive database, which
handle the new sequence addition besides deletion of obsolete data. These algorithms have been termed
as PSPM algorithms henceforth in our discussion (Table 5). The three algorithms PISA, Weighted al-
gorithm and CISpan has been discussed in detail with the illustrations, as we find these algorithms to
address most of the limitation of the ISPM algorithms. However, other relevant work done for PSPM is
also discussed, to give future direction for research.
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Table 5
Concepts used by ISPM algorithms on progressive databases in their implementation

Year ISPM algorithms on
progressive databases

Theoretical Basis

2001 Pre-large sequence algorithm
for record deletion [Wang et al.]

Use Pre-large sequences to maintain the database for customer sequences deletion.

2002 GSP+ [Zhang et al.] Based on static database algorithm GSP and implement two pruning lemmas to
reduce candidate in iterations.

2002 MFS+ [Zhang et al.] Based on static database algorithm MFS and implement two pruning lemmas to
reduce candidate in iterations.

2006 SPAM+ [Huang et al.] Based on static database algorithm SPAM.
2006 MA_D [Ren and Zhou] Maintains the sequential patterns obtain from the updating of database. It uses the

information of previous mining results.
2006 IU_D [Ren and Zhou] Maintains the incremental updating of the database with every deletion by using the

information of previous mining results.
2008 PISA [Huang et al.] Provides a general model to find the sequential pattern in defined period of interest

(POI). It uses the sliding window concept. .and maintains tree to store latest data
sequence.

2008 CISpan [Yuan et al.] Used for closed sequential pattern by building tree- like structure, incremental lattice
to store frequent sequences.

2009 Weighted approach to extract
sequential pattern from progres-
sive database [Mhatre et al.]

It provides weights to individual items or timestamps of sequential pattern so that the
importance of the extracted sequential pattern from the progressive database could
be measured.

2009 FUSP tree update algorithm
[Lin, 2009]

An F USP tree is maintained to incrementally mine the progressive database for
sequential patterns.

An algorithm [42] based on the concept of pre- large sequence is proposed to maintain the database
with record deletion. Pre-large sequence as defined by a lower support threshold and an upper support
threshold behave like a buffer [43]. This prevents the transition of sequential patterns directly from large
to small and vice versa. The algorithm maintains the large and pre-large sequences with their counts
from original database. The deleted customer sequences are compared with them. If found they are
categorized as small, pre-large and large. Accordingly the support ratio is changed, otherwise no action
is required. The algorithm does not require re-scanning the original database until the deleted customer
sequences exceeds a threshold. This threshold value depends on database size. This proposed approach
is hence more efficient for large databases.

Zhang et al. [32] developed two algorithms for PSPM, based on static algorithms one based on GSP,
and the other based on MFS. To handle the deletion and the insertion of data, they employed two prun-
ing lemmas that reduce the number of candidates with iterations. This further improves the scanning
time of the database. However, MFS+ and to some extent GSP+ have to mine sequential patterns sep-
arately from each sub database for all combinations of Period of Interest (POIs). Thus, the performance
improvement of GSP+ and MFS+ over GSP and MFS is not much significant.

MA_D (Maintenance Algorithm when Deleting some information) [14] algorithm utilizes the infor-
mation obtained from previous mining processes. A new method was developed to generate the min-
imum sets of candidate sequences that can be used for further mining for better results. When some
information is deleted from an original sequence database, MA_D algorithm performs incremental up-
dating to discover frequent sequences from updated database with respect to the same minimum support
threshold. This minimizes the overall runtime of the whole process. However, the multiple pass per-
formed on the database is the limitation of the MA_ D algorithm.

Ren and Zhou [23] have presented an algorithm, called IU_D, for mining frequent sequences when
some transactions and/or data sequences are deleted from the original sequence database. This algorithm
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Apriori

GSP

IU_D

GSP+  MFS+ MA_D

Fig. 15. The naïve approach used by ISPM algorithms that work on progressive databases.

also uses information obtained during earlier mining process to reduce the cost of finding new sequential
patterns in the updated database.

Huang et al. employed a more recent method SPAM, as it is known as a better algorithm than other
static sequential pattern algorithms. They modified this algorithm to SPAM+ and experimentally proved
that the proposed algorithm outperforms the static SPAM algorithm with a considerable factor. Figure 15
gives the naïve approaches implemented by some of these PSPM algorithms.

FUSP-Tree Update Algorithm [4] uses FUSP- tree to maintain the incremental update in the se-
quences. A FUSP tree is built initially from the original database. Later the tree is maintained with
every update and deletion of customer sequences. The FUSP tree is based on the concept of FUFP tree
and IncSpan tree. The FUSP tree maintains the complete sequences that avoids and reduce the cost of
rescanning the original database. This algorithm based on tree update give better result than the batch
FUSP-tree algorithm (discussed in Section 4.3) to handle the deletion of customer sequences.

An efficient approach based on a general model of SPM in a progressive database, PISA (Progressive
mIning of Sequential pAttern) [22] is proposed. It is based on the concept of sliding window which is
continuously progressing along with time. The window length is specified by the user and corresponds
to the particular timestamp called as POI (Period of Interest). Let us explain the concept behind Pisa
algorithm with a sample database ‘S’ (Fig. 16). ‘W ’ represents the POI with sequences of item/item
set whose timestamp falls in the interval [p, q], that is, W p,q is the window to represent time period
starting with timestamp p and end with timestamp q. T1, T2, T3, T4 . . . T10 represent the timestamps and
101, 102, 103–106 are the sequence identifiers. a, b, c, d, e, f, g and h are the items in the database.
Let the minimum support threshold, minSupp be 0.3 and the POI be five timestamps. The minimum
frequency for any sequential pattern to be treated as frequent for our example would be 5 × 0.3 (W p,q

× minSupp) = 1.5. So for W 1,5 in the database ‘S’ , we can discover ‘ab’ as the frequent sequential
pattern, whose occurrence frequency is 3 as in sequence 101, 103, 105. However, for all the timestamps
further till T10, ‘ab’ is not a frequent pattern in any POI. The Pisa algorithm can delete this pattern
at timestamp T6 for being obsolete. Further, the algorithm incrementally discovers sequential patterns
in defined time of POI. It utilizes a PS_tree (progressive sequential tree) to efficiently maintain the
latest data sequences, discover the complete set of up-to-date sequential patterns, and delete obsolete
data and patterns accordingly. PS_tree stores the element, timestamps of sequences in each POI and
the occurrence frequency of every possible frequent sequential pattern at any time. The height of the
sequential pattern tree depends on the length of POI. Hence, the memory requirement by Pisa is limited
as compared to those by the alternative methods. It requires only one scan of the candidate sequences
maintained by the PS-tree to discover frequent sequent pattern at each timestamp.
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Fig. 16. The example database ‘S’ to illustrate the PISA and Weighted algorithm.

Mhatre et al. [1] contribute further to this work, by proposing a method to prioritize between any
two patterns mined at any instance of time. The method presented by them considers the time intervals
between successive items, in addition to the item occurrence order. It is obvious, that an occurrence of a
sequence with more time intervals in between its items would have lesser participation in determining the
total support count for that sequence; as compared to an occurrence with no or lesser time intervals with
the same POI. So this method provides a metric to measure the importance of the extracted sequential
pattern from the progressive database. Using the same example database ‘S’, given in Fig. 16, the PISA
algorithm for POI W 1,5 will give ‘ab’, ‘bc’ and ‘df ’ as frequent sequential pattern with minSupp value
as 0.3. On the contrary, this method would assign weight/priority to the item sets according to the time
gaps within the items of the item sets. So, for our example, the sequence pattern ‘bc’ with a time gap of 2
timestamps in sequence 101 and 105 is not considered to be frequent sequential pattern by the weighted
approach. On the other hand, it considers ‘ab’ as a frequent sequential pattern as the time gap between
‘a’ and ‘b’ is 1 in sequence 101, 103 and 105. The weighted approach maintains WM-ary tree, that is,
Weighted M-ary tree to keep the information regarding, a) the item/itemset of the sequence, b) list of
sequence identifiers, c) list of timestamps corresponding to each sequence, d) original timestamp that is
the actual timestamp when the element occurs in a particular sequence and e) the time gap field to denote
the number of inter-item time gaps in the pattern. The weighted algorithm insert, update and delete the
nodes in the WM-ary tree as per the changes in the database. So, all candidate sequential patterns can be
obtained from the tree for a particular POI.

CISpan, (Comprehensive Incremental Sequential PAtterN mining) [7] algorithm provides the solution
in a divide and conquer manner. This separates the insertion and removal case apart from each other.
The algorithm builds an incremental lattice, a tree-like data structure to store all the frequent sequences
appearing in the inserted sequences. However, removal of sequences is done directly by updating the
intermediate mining data structure, namely prefix lattice, of the original database. It is the compact
representation of all the frequent sequence within the database. For incremental lattice, the number of
nodes is confined only to items that are involved within the inserted sequences. However, the removed
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Fig. 17. Diagrammatic representation for the overview of CISpan.

sequences are handled by updating the original prefix lattice. CISpan algorithm then merges the original
prefix lattice with the incremental lattice to give the updated lattice. A non- closed sequence elimination
algorithm is applied to the updated lattice to give closed frequent sequences. The algorithm can also be
used for generating complete frequent sequences. Let us illustrate this with an example. We use ‘U ’ to
represent the unchanged sequence set in our database, ‘I’ for the inserted sequence set and ‘R’ for the
removed sequence set from the database (Fig. 17). ‘P ’ is the updated database given by P = U ∪ I
and P ’ is the database obtained after removal of sequences. The incremental lattice LI is generated only
from items in I . LI calculate the support of sequences by using the database P . PLO is the prefix lattice
that is build from the original database. PLO’ is the prefix lattice derived from PLO after the removal
of sequences. The CISpan algorithm handle the insertion and removal of sequences in the database by
performing the two activities of building LI and PLO’ separately. It then merges these two lattices to
give the updated lattice denoted as L. We can obtain frequent closed sequential pattern from this by
applying closed sequential mining. The lattice L can also give complete frequent sequential pattern by
performing basic SPM algorithms.

8. Applications of PSPM algorithms

As mentioned in Section 1, the mining of sequential patterns finds vast applications. With the dis-
cussion made so far, it is needless to state that, in practice with dynamic and distributed databases, the
PSPM algorithms have more vital role to play. We demonstrate this, with some real-time applications as
given below:

a) Text mining: There are tools like CP- Miner, Clospan, Mapo, Muvi, PR- Miner that tokenize the
source text in certain ways. The tokens are then mapped to the sequence database. This database
could be further mined to extract frequent sequential patterns using PSPM algorithms. Useful in-
formation, like programming rules, API usage, and copy-pasted code segments can be extracted.

AU
TH

O
R 

CO
PY



528 B. Mallick et al. / Incremental mining of sequential pattern

For example, CP – Miner is a tool that detects copy-pasted text segments from the given text ef-
fectively. It first tokenizes every statement of the source text. Then it maps these tokens into a
sequence database. When this database is mined for closed sequential patterns say with minimum
support threshold of 3, it provides details of all copy pasted text segments that were repeated twice.

b) Stock Market analysis: Usually as per the local and global market scenarios, as well as economic
condition of a state, stock market follows a particular trend in sales and purchase of stocks. These
are the sequential patterns which could be mapped to our sequence database, which is dynamic
in nature. This database, mined by using PSPM algorithms, could provide useful information like,
which type of stocks suffers from major losses in particular situation, or in making decisions that
purchase of which stock could book profit, based on past history.

c) Medical/Biological based application: Nowadays, there is an increase in the amount of biological
data sequences, either DNA or protein sequences. These sequences once mapped to the sequence
database could be mined based on their structure, function and role in chromosome. For example,
one of the common problems that occur in analysis of biological sequences is to find the similarity
in sequences of related proteins or genes. Such similarity (frequent sequential pattern) is due to the
residues that are conserved during evolution of mankind. PSPM algorithm applied in this area can
give desired results.

d) Retail Industry: The study of customer purchasing behavior is an example of modeling the behavior
of some entity along time. By using a database, with transactions performed by customers at any
instant, helps to predict what would be the customer’s next transaction, based on his past transac-
tions. This knowledge could help in decision making for sales and production of customer goods.
This may even help in demand forecasting, inventory management, supply chain management and
so on.

e) World Wide Web (WWW) application: There is a huge volume of daily log data collected on
the server sites. This includes the sequences of page accesses by thousands of users on the web.
This data (server logs) can be studied and analyzed to discover frequent user access patterns on
WWW. We can use this knowledge to improvise the system design of the web application, like
maintaining better hyperlinked structure between correlated pages. Going further, this could even
help in making better marketing decisions by strategically placing the advertisement on the web.

9. Conclusion

Since they were defined in 1995, sequential patterns have received a great deal of attention. Earlier
work in this area were focused on improving the efficiency of the algorithms, either with new structures,
new representations or by managing the database in the main memory.

Validity of discovered patterns may change and new patterns may emerge due to updates on databases.
In order to keep the current and up-to date sequential patterns, re-execution of the mining algorithm on
the whole updated database is required. However, it takes more time than required in mining with the
original database because of the new data sequences appended.

Therefore, the ISPM has gain popularity which utilizes previously discovered knowledge to solve
the maintenance problem of the dynamic updated database efficiently without re-mining from scratch.
Incremental mining is, however, not effective when the databases should be considered for updated
information without the obsolete data. Under such situations the PSPM has become the obvious choice.

We can conclude that in present scenario there is a lot of research scope to be done in the area of ISPM
applied on progressive databases. We are also working in this area; to give algorithms that are based on
constraint based PSPM.
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